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The interaction between magnetic fields and convection in a fluid heated from below is 
investigated in an axisymmetric cylindrical geometry. When R,, the magnetic 
Reynolds number, is large the field is concentrated into a thin rope on the axis of the 
cylinder. FOP weak magnetic fields a larger Rayleigh number is necessary to produce a 
flux rope than that needed for infinitesimal convection. For larger total fluxes, how- 
ever, the opposite is true and the system is subcritically unst’able to steady motions. 
The results are contrasted with those found by Busse (1975) for the corresponding 
two-dimensional roll problem. 

1. Introduction 
The theory of the interaction between magnetic fields and thermal convection is of 

great importance in the study of the solar convective zone. Recent observations 
(Stenflo 1976; Harvey 1977) have shown that the photospheric granulation and super- 
granulation are threaded by intermittent but intense flux concentrations that are 
formed by, and react upon, the convective motions (for a discussion see Galloway, 
Proctor & Weiss 1977); the precise nature of the dynamic balance that is attained is 
the main goal of inquiry. 

There have been numerous studies of idealized model problems. Thompson (1951), 
Chandrasekhar (1961) and Danielson (1961) have studied the linear instability of a 
Boussinesq fluid layer heated uniformly from below (the Rayleigh- BBnard or RB 
problem) with an imposed vertical magnetic field. They found that if p ,  = K / T  < 1, 
where K is the thermal conductivity and 7 the magnetic diffusivity, motion occurs 
first as steady convection as the Rayleigh number (a dimensionless measure of the 
temperature difference across the layer) is increased. If p3 > 1, however, and there 
is sufficient magnetic flux present, then convection occurs first as overstable oscil- 
lations. All these linear results are independent of the convection planform. 

More recent investigations of the nonlinear regime have shown that the linear 
results are rather unrepresentative, When p ,  b 1 the effects of advection of the 
magnetic field quickly come to dominate those of diffusion (i.e. the magnetic Reynolds 
number R, E PL/q 9 1, where L and P are typical length and velocity scales); then 
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the flux is expelled from recirculating eddies and becomes confined to thin ropes or 
sheets between them (Weiss 1966). The geometry of the convection planform now 
becomes of crucial importance since ropes and sheets have quite different dynamical 
properties (Galloway, Proctor & Weiss 1978) and ropes, in particular, cannot be 
formed by a two-dimensional roll pattern. An axisymmetric geometry can be used as 
a model for a hexagonal planform (Jones, Moore & Weiss 1976). Galloway et al. (1978) 
show by considering the simple Oberbeck problem (in which a steady temperature 
distribution is prescribed throughout the cell) that axisymmetric ropes affect the local 
velocity field more strongly for a given flux, and that their back-reaction on the 
velocity field is largely confined to the flux rope itself. 

Galloway (1977) and Galloway & Moore (1979) have described numerical experi- 
ments for the full RB problem in an axisymmetric geometry. Among many results, 
they find that even for large p3 a steady solution is possible with the flux confined to a 
rope on the axis, even though linear theory predicts overstability, provided the con- 
vection is sufficiently vigorous. Very similar phenomena occur for the related problem 
of thermohaline convection, recently treated in great detail by Huppert & Moore 
(1976). 

However, calculations for the analogous two-dimensional RB problem (Weiss 1975) 
show that oscillatory motion may persist well into the nonlinear regime. Analytical 
results are very elusive, but Busse (1975) has investigated the two-dimensional RB 
problem for p 3  1 and very small magnetic fluxes. The whole solution except the 
magnetic lines of force can then be calculated analytically when ['L/K, the PBclet 
number, is small. Busse finds that when R, b 1 convection is possible at smaller 
values of the Rayleigh number than for the linear problem (for which R, is perforce 
vanishingly small), and conjectures that this shows steady motions to be preferred 
to overstable oscillations at  finite amplitude. No definite statement can be made, 
unfortunately, since the flux is so small in his model that overstability is not possible 
in the linear regime. 

The purpose of the present paper is to attempt to make further progress along the 
lines advocated by Busse but using the more relevant cylindrical geometry. The 
motive is to obtain as much information as possible about the evolved steady solutions, 
even though these may be unstable to unsteady modes for some parameter values, 
so that when the much harder oscillatory problem is eventually tackled there will be 
some basis for comparison. Our analysis is formally valid over a much wider par- 
ameter range than that of Busse, since we can take over the analytical results used by 
Galloway et al. (1978) for the Oberbeck problem. The analysis becomes tractable 
owing to the localized nature of the Lorentz forces due to the flux rope. Our results 
differ qualitatively from those of Busse, indicating the importance of geometry in the 
flux-rope regime. In  particular, for the axisymmetric case higher values of R, can be 
obtained only for larger temperature contrasts, when magnetic fluxes are small. For 
larger fluxes, though, subcritical bifurcation is possible, which is consistent with the 
existence of finite amplitude steady states. Unfortunately our analysis cannot be 
extended quite far enough to allow a conclusive demonstration. 

There are other useful aspects of the analysis. It complements the work of Galloway 
(1977) and Galloway & Moore (1979) since it is most accurate precisely where their 
numerical techniques fail (our basic assumption being that the flux rope is vanishingly 
thin). It also leads to results for the peak magnetic field in the system as a function 
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of the mean flux, and to an expression for the maximum of this function (criteria of 
this kind may be useful in predicting the largest fields that can be observed in the solar 
photosphere; see Galloway et al. 1977). Finally, we are hopeful that the techniques 
can be extended to the much more difficult (but more relevant) compressible con- 
vection problem. 

The plan of the paper is as follows. Section 2 contains a description of the problem 
and of the approximations needed to make analytical progress. In  5 3 the solution is 
obtained to the required order using boundary-layer theory and matched asymptotic 
expansions. In  3 4 numerical results for a given (large) value of p ,  are presented and 
discussed. In  a conclusion we relate our results to those of Busse and discuss further 
avenues of exploration. 

2. Formulation of the problem 
We consider convection with an axisymmetric, poloidal velocity field U and magnetic 

field B in a Boussinesq fluid of temperature T and density p = p ,  [ 1 -a(T - T,)], 
where T, and po are constants. The equations satisfied by these quantities are then 

where K and 7 are the thermal and magnetic diffusivities, u is the kinematic viscosity 
and ( r ,  4, z )  are cylindrical polar co-ordinates. The gravitational acceleration g = - 91 
and the Stokes stream function $, Stokes flux function 2, vorticity o and electric 
current j are defined by 

u = v P (1c.r- $ 1 ,  B = v A (Xr-l$), 

w = (V A U t . 4  = - r -  lD2$, j = (0 A B).$ = -r-lD2x, 

where 

is the Stokes operator. 
The flow takes place in the cylinder (0 5 r 5 r,; 0 5 z 5 d}. The boundary conditions 

are chosen to simplify the analysis, and to fix attention on the magnetic flux threading 
the cylinder. Normal velocity and tangential stress vanish on the boundaries; the 
curved surface is a perfect electrical conductor; hence the total vertical flux is fixed 
and equal to that for a uniform field B, 5. The field lines are constrained to be vertical 
at  z = 0, d, though they emerge a t  any value of r .  This convenient condition seems 
less arbitrary than any procedure that anchors the flux lines. It also implies vanishing 
Maxwell stresses a t  the boundary, and so avoids any discussion of the influence of the 
field on the material outside. Thus 

] (2.5) 
$ = w = 0 ( z  = 0 , d ;  r = O,ro),  

x = 0 (r = O), x = &B,r: ( r  = ro), ax/& = 0 ( z  = 0, d) .  
in-? 
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The temperature is prescribed at the upper and lower boundaries and there is no 
heat flux across the curved surface; thus 

T = To ( x  = d) ,  T = To+AT (z = 0) ,  aT/ar = 0 ( r  = O,ro). (2.6) 

It is clear that the problem as posed is highly nonlinear, and we need to make some 
restrictions in the parameter space in order to achieve analytical progress. Our first 
simplification is to suppose that the Prandtl number p ,  = v/K is so large that the 
Reynolds number Re = UL/v,  

where V and L are typical scales for velocity and length, is always vanishingly small. 
It may be verified that the effect on (2.3) is that both aw/& and the Jacobian involving 
w on the right-hand side may be ignored in comparison with the other terms, leading 
to the reduced equation 
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(2.7) 

in place of (2.3). We also suppose that the motions are sufficiently weak that the 
deviation of the temperature profile from To + AT( 1 - z /d)  (its value when U = 0) is 
very small; i.e. the PBclet number 

8 = t T L / K  (2.8) 

is supposed to be much less than unity. Finally, the Ohmic diffusivity 7 is supposed to 
be so small that although the PBclet number is small the magnetic field is significantly 
changed from BO& (its value when U = 0 ) ,  so that the magnetic Reynolds number 

R, = E K / 7  (2.9) 

is much greater than unity. Of course, these restrictions have implications for the 
relative magnitudes of the diffusivities v, K and 7 ; in fact 

for (2.7)-(2.10) to be valid. 
V $ K $ > r  (2.10) 

It is helpful to cast the equations in dimensionless form. Writing 

t = d2/Kt’, (r ,z)  = d(r‘ ,x’) ,  T -  To = AT(1 - Z ’ + E ~ ’ ) ,  

U = (cK/d) U’, B = BOB’, etc., (2.11) 

substituting into (2.1), (2.2) and (2.8), and dropping primes, we have 

where the new dimensionless parameters are the Rayleigh number 

R = gaATd3/Kv, 

Q = B% d2/PPo ~7 
the Chandrasekhar number 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and the diffusivity ratio P3 = 4 7 .  (2.17) 
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As previously noted, we shall suppose that 6 g 1 and R, b 1 in what follows. R is 
(necessarily) of order R, = %'-7r4 (the linear eigenvalue) and we allow Q to take almost 
any value subject to a very weak restriction [ (4 .4 )  below]. The boundary conditions 
on the dimensionless variables are the same as those on the dimensional ones except 
that 0 vanishes at z = 0 , l .  

Of course, 6 and R, are not externally given parameters. They depend in a com- 
plicated way upon R, Q and p 3  and it is the object of the analysis of the next section 
to discover these relationships for steady motions and fields. 

3. Solution for steady fields 
3.1.  Formulation 

We now restrict attention to steady fields so that the time derivatives drop out of 
(2 .1 ) - (2 .3 ) .  It will emerge that the change in R from the basic linear eigenvalue R, 
obtained by setting e = Q = 0 is small for all values of Q for which the analysis is valid. 
Since the effects of non-zero 6 are small too, by supposition, we may to leading order 
treat these two perturbations separately. Thus in what follows we set E = 0. The 
corrections due to E will be treated later. 

The analysis of this section follows closely the treatment of the Oberbeck problem 
(in which a horizontal temperature gradient is imposed at z = 0) given by Galloway 
et al. (1978) .  We therefore only summarize the intermediate steps; the reader seeking 
further enlightenment or justification is referred to the above-mentioned paper. We 
first decompose the velocity and temperature fields into 'basic' and 'magnetically 
induced' parts. If we write 

R = Ro+Rl, $ = $o-+$l, 8 = Oo+Ol, ( 3 . 1 )  

where R, is the linear eigenvalue and ($,, 8,) the linear eigenfunction of the non- 
magnetic problem, we have 

- 1 D2(ro0), ( 3 . 2 ~ )  
R o ~ -  r 

and 

1 2 9 0  o = - -+w, 
r 2r 

(3 .2b)  

( 3 . 3 ~ )  

( 3 . 3 b )  

Note that no approximation has yet been made. In  order to determine the problem 
fully, we fix the (dimensional) radius of the cell r ,  = h,d, where 

A, = P W j l ,  Jl(j1) = 0, ( 3 . 4 )  

such thatj ,  = 3.83171 . . . . This leads in the axisymmetric case to  the smallest possible 
value of R,, namely %zn4 = 657.51 . . ., and to the eigenfunctions (see Jones et al. 1976) 

J(kr)sinnz (k = n/21) .  
k 

0, = - 
k2+n2 

9, = rJl(kr) sin m, (3 .5 )  
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The P6clet number is now defined completely by the normalization used for @o. In  
order to find R, (the main object of this section) we must assume that the term R, 
aO,/ar can be neglected in ( 3 . 3 ~ )  compared with all other terms. It can be verified a 
posteriori that this is always the case provided that all the other conditions are ful- 
filled, even if Q = O(1). The two-dimensional problem is tractable only when Q is 
very small, so here we at once see an important difference between the two geometriea. 

1 the magnetic flux is confined almost entirely in a, 
flux rope of thickness O(R,*) at the axis of the cell. There is another boundary layer at 
the outer edge of the cell, but it contains negligible flux since the mean field on this 
surface is unchanged by the motion (see discussion in $ 3  of Galloway et al. 1978). 
The flux rope spreads out at z = 1 into a horizontal layer of the same thickness. The 
dynamical effect of the latter layer is small but hard to assess exactly. Clearly it is 
at  most comparable to that of the flux sheets of the roll geometry, which Galloway 
et al. have shown to become important when Q N Ri. This could conceivably prove a 
more restrictive condition than (4.5) for the validity of the analysis; however, numerical 
experiments suggest that this layer is far less important in practice, so we ignore it 
in what follows. 

3.2. TheJEux rope 
Near the axis, since the rope is of thickness R,h we may define the stretched co- 
ordinate 6 = d m r .  

The structure of the rope depends only on the vertical velocity at the axis; if 

We first note that since R, 

(3.6) 

@ = +r2f(z) + o(r2) as r + 0, 

where f =fo+fl, fo(z) = ksinnz, 
then the equation for x is 

to leading order. For 1 - z < R;* this is solved by 

where 
(3.9) 

The function p ( z )  is related to the vertical field B* on the axis since 

(3.10) 
from (3.9). 

This solution can now be used in ( 3 . 3 ~ )  to find the vorticity generated in the flux 
rope by the Lorentz forces. The terms in O may be neglected in this layer, and the 
solution for the vorticity a(& z )  is found to be 

r6j = R;* g6j = BQxg [ 1 - exp ( - pg2)] dpldz  (3.11) 

B*(z) = B,B,(O,z) = B0R,p(z) 

to leading order; thus a t  the edge of the flux rope we have 

(3.12) 
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3.3. The jeld-free region 
The magnetic field is negligible away from the flux rope. Thus in the interior of the 
fluid we must satisfy the equations 

as, a8 i 
R -+ R - = -D2(rB),  

ar Oar r 
( 3 . 1 3 ~ )  

(3.13 b )  

where ($, 8) are the ‘outer’ parts of ($,, 8,) respectively. In  accordance with the 
principle of matched asymptotic expansions, we require that as r + 0 

rD + +&xi dp ldz .  (3.14) 

This boundary condition can in fact be used to determine R,. Before doing this, 
though, we can find the correction to the vertical velocity on the axis caused by the 
presence of t,he rope. Since near r = 0 

P$ = - rB  N - ~ Q x %  d ~ l d z ,  

$ = - BQxt r2 In rdp/dz + O(r2)  it  follows that 

(3.15) 

(3.16) 

near the axis. Now the boundary-layer solution for 6 from (3.11) can be integrated 
to obtain the boundary-layer stream function $. Thus we find for large 5 

$ = - $ 9 ~ :  Rkl E21n Eidp/dz + QC(z) R;l E2, (3.17) 

where C(z) is an arbitrary function of integration. In  terms of E,  (3.16) may be written 
as 

so the principle of matched asymptotic expansions implies that 

C(z) = $Qxi In R i  dp/dz .  (3.19) 

Now, the particular integral in (3.17) leads to velocities of O(Q) near the axis. Thus the 
dominant contribution to the velocity correction due to the presence of the rope is 

fib) = BQx% In Rkdpldz. (3.20) 

The analysis leading to (3.20) is treated at much greater length in Galloway et al. 
(1978). Since f = f o +  f, = 2zp, we have a relation between p ,  Q and R,: 

&Qx: In R i  dp/dz = 22p - k sin nz (3.21) 

which is to be solved subject to the condition p(1) = 0. The conditions that 

f(0) = d2f(O)/d22 = 0, 

implied by the velocity boundary conditions, are in fact satisfied by all solutions of 
(3.21). If R, is known (as in the Oberbeck case), (3.21) determinesp(z), and thus the 
field on the axis, as a function of Q. Here it is the Rayleigh number that is given 
externally, so we need a further relation to close the problem. This is provided by the 
solvability condition for (3.13). 
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3.4. Determination of R ,  
It is clear that (3 .13)  is an inhomogeneous version of the linear eigenvalue problem 
and thus has a solution only if the inhomogeneous terms are orthogonal to the linear 
eigensolution (since the basic problem is self-adjoint). If we multiply (3 .13a)  by 
lCro/r, (3.13b) by 0, and integrate over the cylinder, we obtain after some algebra 

where 

CRl = -2 dz 
(3 .22)  

Equation (3 .22)  is a necessary and sufficient condition for the existence of a solution 
$ whose expansion about r = 0 leads to fi(z) as calculated in $ 3 . 3  above. The sig- 
nificance of the enigmatic expression on the right-hand side of (3 .22)  can be clarified. 
Substitution from (3 .21)  enables it to be rewritten as 

CR, = 
4 

(3.23) 

The terms on the right-hand side of (3 .23)  can be related to more familiar quantities 
by means of a power integral argument. If we take the full equations (2.12)-(2.14) 
with 8/22 = 0, multiply the second by r-2D2x, the third by $1. and integrate over the 
cylinder, we obtain the power integral 

R[U.%BdV = J d d V + Q Q / R & ,  (3 .24)  

where L! E [ (r1Dx)2d V is a measure of the Ohmic dissipation. If we now substitute 
@ = q0 + $,, etc., we find to leading order 

RoJUo.ZOodV = J q d V  (3 .25)  

and R, [ Uo . 2 0, d V = &Q/Rk + J W: d V .  (3.26) 

Although w1 is small compared with wo in the interior, it becomes large in the boundary 
layer and in fact the two terms on the right-hand side of (3 .23)  are identifiable [as 
may easily be verified by use of (3 .9 )  and (3 .11 ) ]  with the respective terms on the 
right-hand side of (3 .26) .  When &In R i  = O(1) the viscous term is of the same order 
as the Ohmic one and when this product is large the viscous term actually dominates. 
The correspondence is a powerful check on the validity of the analysis and also 
demonstrates that the field is certainly not 'weak ' even though R1/Ro is small. 

The expansion of R may now be completed by adding the terms in E .  Since 

Ri = O(Qldp/dzl) 
we may assume that &dp/dz = O($) so that the PBclet number correction may be 
obtained by assuming that Q = 0. This problem has been solved by Jones et a2. (1976)  
and leads when v 9 K to a correction + 1 2 . 5 6 ~ ~  to leading order in S .  

Thus the complete expansion for R takes the form 

(3 .27)  
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This equation, together with (3.21) and the identity R, = ep,, yields a transcendental 
relation between 6 and R, Q. and p, .  Further progress requires numerical methods, 
except in certain limiting situations. It is evident, though, that considerable simpli- 
fication has been achieved over the original nonlinear partial differential equations. 

In  the next section, we present computed solutions of (3.27) and (3.21) for a number 
of representative cases. We also derive certain analytical results which are available, 
and compare the results we obtain with Busse’s (1975) calculations for the two- 
dimensional case. It will be seen that there are important qualitative differences 
between the two geometries. 

4. Results and discussion 
4.1. Weakly nonlinear (low R,) theory 

It is helpful in setting up the framework for what follows to recall some earlier results 
by Chandrasekhar (1961) and others. It is known that the critical Rayleigh number for 
the onset of infinitesimal steady motion is 

(4.1) 

(since the values of Q studied here are not so large that a convective mode with two 
nested cells is preferred). Furthermore, it is possible when E is so small that R, = ep3 < 1 
to find the dependence of R on E and R, by perturbation methods similar to those used 
by Jones et al. (1976). When Q is so small that Lorentz forces are negligible, we find 
that 

R, = Yn4 c 3 ~ 2 Q  

R =  R , + 1 2 * 5 6 ~ ~ + 1 . 3 2 R L Q ,  (4.2) 

so that for small enough Q the bifurcation a t  R = R, is definitely supercritical. Busse’s 
(1975) analysis (carried out for a square two-dimensional roll) gives subcritical 
behaviour, but for cells with an aspect ratio of 1 : 24 (corresponding to R, = 5%7*) the 
coefficient of QRk was found to be positive (personal communication from F. H. Busse). 
The present results should not be interpreted, though, to impIy that axisymmetric 
steady magnetoconvection is always supereritically unstable, since the small-R, 
results show more complicated behaviour when Q is not small. 

4.2. The kinematic limit (Qln R i  < 1) 

For sufficiently small Q the deviation from the basic flow U, is so small, even in the 
flux rope, that (3.27) becomes 

where p ,  = ksinnz/2z. The integral can be transformed into one that is tabulated, 
so that we have 

R = 242~4+ 12.56e2+ 153Q. (4.4) 

This confirms the result (4.2) on the supercriticality of the bifurcation, since the 
expression in (4.4) is definitely greater than R,. It should be remarked that the two- 
dimensional result is quite different, the term in Q being replaced by one of the 
form + constant Q(ep,). -3. 
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4.3. The large-& (dynamic) limit 

If Q In Rk $ 1 but the flux rope is still thin, so that 

Rmlpl - Rm/QlnRk B 1 (4.5) 

(4.6) 

(thieprovides the restriction on Q referred to in 0 2), then from (3.21) we have at  leading 
order dpldz = - 2k sin nz/Qx$ In Rk, 

80 to this order the terms in Q in (3.27) reduce to 

ka 
where ,8 = - = 61.349 ... , 1 P gJ: sin2m dz- = - 1nRk lnRk’ 2 c  (4.7) 

It is interesting that this expression is independent of Q. It is also much less than unity 
as long as R,,, is large, and it may be verified that (4.7) does in fact give the maximum 
value of R, as a function of Q for fixed Rm. This shows clearly that Q does not have to 
be small for the analysis to be valid: it is necessary only that In R, = 0(c2) .  For large 
fluxes we therefore have a limiting form of the R, e curve described by 

R = R,+12-56e2+/3/lnRk (4.8) 

and this evidently leads to a minimum R, of R as a function of e which occurs for 
p3 1 when 

g = g, N (L)% 
12.56 lnp3’ 

For this value of 8,  R = R, N R, + 2,8/lnp3. (4.9) 

Since R, is independent of Q, it  is much less than R, in the large-& limit. So for these 
strong fields we have a subcritical instability. Thus the form of the instability depends 
crucially on the size of Q. It is easily shown that, for smaller values of Q, R has a 
minimum value R,,,,, as a function of 8 that is less than R,. Since the bifurcation is 
supercritical for small enough Q there must be some value QInt of Q for which 

R,(Q) = Rmln(Q). 
Qlnt clearly depends on p 3  and no simple formula is available. The fact that (3.27) 
possesses a minimum at all in the high-R, range means that, for Q < Qint a t  least, R 
begins a t  R, and then must reach a local minimum that is greater than R,! Thus the 
direction of the R, E curve must change at  least twice (as sketched in figure 1 )  or 
possibly more times if the bifurcation is subcritical. Of course we have no right to 
expect monotonic behaviour of the curve since we are well into the nonlinear regime. 

4.4. Numerical results 
In order to keep the necessary data within reasonable bounds, it  was decided to 
examine only one (large) value ofp3. Then for given values of e and Q, (3.21) and (3.27) 
could be solved to obtain graphs of each of these quantities against R. The remaining 
results, those for B and the maximum field as functions of Q for fixed R, were obtained 
by interpolation. The value ofp3 chosen was 4 x 108; the range of validity of the theory 
increases with p3 and a large value of this parameter is not unreasonable in the solar 
context owing to the large radiative contribution to K. For this value we find that 

R, = R,+ 7.1. (4.10) 
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FIUVRE 2. Rml, and R, as functions of Q for p ,  = 4 x lo8. 

Figure 2 shows the minimum Rayleigh number Rmin for which convection can occur 
a t  large R, plotted as a function of Q. As &-+Go, Rmin-+ R, from below. The curve 
also shows Re, the eigenvalue for the exchange of stabilities. The intersection of these 
lines gives Qint, which for the given value o f p ,  is 0.2075. In  figure 3 the PCclet number 
6 is plotted as a function of R for Q = 0.9 and 0 (greater than and less than Qint, 

FIUURE 1. Sketch of possible forms of R as a function of e2 in the axisymmetric geometry. Note 
that the curve must have form (a )  if Rmln > R, (i.e. if Q < &,,J. The bifurcation is always super- 
critical, as in (a) ,  for all sufficiently small &. 



284 

1.0 

M .  R. E.  Proctor and D.  J .  Calloway 

- 
- 
- 

-- - 

__._. - . . -. -. . -- 
- . '. . - 

\ 

\ 

I 

- I 

I I I  I --f 1 I I I l l  1 

\ 
\ 
\ I  I 4 

R Ro 

0 5 10 15 

FIGURE 3. E as a function of R for Q = 0, Q = 0.9 and Q -+a; p ,  = 4 x lo8. 

respectively) and for &+a, in which case the limiting equation (4.8) applies. The 
corresponding values of R, are also given. Figure 4 shows E as a function of Q for 
R = 663 and 666 (less than and greater than R,, respectively). The difference in the 
two curves is marked. For R = 663 there is a maximum value of Q for which con- 
vection is possible in the flux rope regime; this gives a curve qualitatively similar to 
those of Busse. For R = 666, on the other hand, convection is possible for all Q (up 
to the limit O(R,/ln R,) beyond which the theory ceases to apply), and e asymptotes 
to the appropriate point on the curve (4.7) (e- t  0.4 in this case). The lower part of the 
R = 663 curve corresponds to a negative value of aR/& and is therefore certainly 
unstable. The corresponding part of the R = 666 curve is too near the axis to be shown. 
Finally, figure 5 shows the graph of &tR,p(O), a measure of the maximum field, against 
Q4, a measure of the mean field, for the same two values of R. Clearly, there is in each 
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to the mean magnetic field) for R = 663 and R = 666; p ,  = 4 x lo8. 

case a maximum of the field as a function of Q .  This was to be expected since the 
same phenomenon occurs in the Oberbeck problem treated by Galloway et al. (1978). 
For R = 663, the flux-rope solution ‘runs out’ at  Q N 0.109, but for the higher value 
of R the maximum field - Q- 4 for large Q .  

5. Conclusions 
In previous sections we have shown how the boundary-layer methods developed 

by Galloway et al. (1978) may be applied to the Rayleigh-B6nard problem in a cylin- 
drical geometry. The only significant restrictions on the analysis are that the magnetic 
Reynolds number remains large and that the PBclet and Reynolds numbers remain 
small. Because of the singular nature of the axisymmetric flux rope there is no re- 
striction on the amplitude of dynamical effects local to the rope. In  the analogous 
two-dimensional problem studied by Busse, it  is only to obtain results possible when 
the local dynamical effects are small and the velocity is essentially unchanged by the 
presence of the field. We have shown that there are important qualitative differences 
between the two geometries. There is for both cases a minimum of R as a function 
of c in the flux-rope regime (R,  1).  In  the axisymmetric case this minimum Rmin, 
is greater than R,, the exchange-of-stabilities eigenvalue, for sufficiently small Q but 
is smaller than R, for larger values of Q .  Thus there is no question of subcritical 
instability for sufficiently weak fields. Furthermore, for Rmin > R, the R, e curve must 
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change direction at least twice as shown in figure 1. Another difference between the 
geometries is that for large enough R ( R  > R,, see previous section) convection is 
possible for all values of the flux threading the convective system provided that the 
flux rope remains thin. The actual assumptions made are that 7 < K Q v, that R, 4 1, 
but that Pe Q 1 and the Reynolds number is vanishingly small. Q may be as large as 
p,/lnp, for the analysis to be valid, 

In  this paper we have confined ourselves to the investigation of steady solutions of 
the governing equations. It is well known that unless Q is very small (of order pgl) 
there exist overstable oscillations of the system for values R,, of R less than R,. 
[For largep, and largepl we have Ro.se = R, + 0(pc1) + O(Qp,l).]AOn the scale of figure 
3, this corresponds to an almost horizontal line passing almost through the origin! 
Now Ro.8. increases with Q and one would be tempted to conclude that, for sufficiently 
large Q ,  R,,8. > Rmin, which would strongly suggest that steady finite amplitude 
instability was possible. Cnfortunately, for large Q, Rmin _N R, = R, + O( l/lnp3). Thus 
Ro.s. -N R, when Q N p,/lnp,, i.e. precisely at  the point where the flux is so large that 
the flux-rope approximation breaks down for E ‘v 1. So no information can be obtained 
in this way. The nonlinear behaviour of the overstable solution has not been investi- 
gated analytically, but the discovery by Galloway (1977) and Galloway & Moore 
(1978) that for large P6clet numbers steady flux-rope regimes are indeed realized 
when one might expect overstability indicates that R,, increases with E. 

We cannot, therefore, claim to have solved the problem of subcritical instability in 
magnetoconvection. We have, however, made significant analytic progress towards 
an understanding of the steady solution. We feel that the methods employed will 
prove useful in understanding the nonlinear interaction of magnetic fields and com- 
pressible convection (which is, of course, much more relevant in the context of the 
solar photosphere, whose understanding forms the motivation for the present work). 
In  the compressible problem there is the added effect of magnetic pressure, which 
will reduce the density in the flux rope, so the outcome is by no means obvious. It 
would also be most desirable to extend the theory to a hexagonal convection pattern 
so as to model the convection zone more closely, but this appears to require significant 
computational effort. 

We are most grateful to N. 0. Weiss for stimulating discussions and criticism and 
to C. A. Jones for computational assistance. 
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